- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Macias, Vanessa_M (2)
-
Rasgon, Jason_L (2)
-
Akbari, Omar_S (1)
-
Huntsinger, Allyn (1)
-
Jones, Matthew_J (1)
-
Joseph, Renuka_E (1)
-
Krawczyk, Grzegorz (1)
-
Li, Ming (1)
-
Lymperopoulos, Konstantinos (1)
-
McGraw, Elizabeth_A (1)
-
McKeand, Sage (1)
-
Peterson, Hillary (1)
-
Sayre, Richard_T (1)
-
Sigle, Leah_T (1)
-
Terradas, Gerard (1)
-
Urakova, Nadya (1)
-
Xi, Zhiyong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR–Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control’s main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.more » « less
-
Urakova, Nadya; Joseph, Renuka_E; Huntsinger, Allyn; Macias, Vanessa_M; Jones, Matthew_J; Sigle, Leah_T; Li, Ming; Akbari, Omar_S; Xi, Zhiyong; Lymperopoulos, Konstantinos; et al (, Insect Molecular Biology)Abstract MultipleWolbachiastrains can block pathogen infection, replication and/or transmission inAedes aegyptimosquitoes under both laboratory and field conditions. However,Wolbachiaeffects on pathogens can be highly variable across systems and the factors governing this variability are not well understood. It is increasingly clear that the mosquito host is not a passive player in whichWolbachiagoverns pathogen transmission phenotypes; rather, the genetics of the host can significantly modulateWolbachia‐mediated pathogen blocking. Specifically, previous work linked variation inWolbachiapathogen blocking to polymorphisms in the mosquito alpha‐mannosidase‐2 (αMan2) gene. Here we use CRISPR‐Cas9 mutagenesis to functionally test this association. We developed αMan2 knockouts and examined effects on bothWolbachiaand virus levels, using dengue virus (DENV;Flaviviridae) and Mayaro virus (MAYV;Togaviridae).Wolbachiatitres were significantly elevated in αMan2 knockout (KO) mosquitoes, but there were complex interactions with virus infection and replication. InWolbachia‐uninfected mosquitoes, the αMan2 KO mutation was associated with decreased DENV titres, but in aWolbachia‐infected background, the αMan2 KO mutation significantly increased virus titres. In contrast, the αMan2 KO mutation significantly increased MAYV replication inWolbachia‐uninfected mosquitoes and did not affectWolbachia‐mediated virus blocking. These results demonstrate that αMan2 modulates arbovirus infection inA. aegyptimosquitoes in a pathogen‐ andWolbachia‐specific manner, and thatWolbachia‐mediated pathogen blocking is a complex phenotype dependent on the mosquito host genotype and the pathogen. These results have a significant impact for the design and use ofWolbachia‐based strategies to control vector‐borne pathogens.more » « less
An official website of the United States government
